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0. INTRODUCTION

Some notations: Before we start, let us quickly list some of the notations

and conventions that will be used.

When an expression of the form a is a subscript or exponent, it will some-
times be written as a(b) for typographical convenience,

The characteristic function (indicator function) of an event A in a pro-
bability space will be denoted by IA or I(A).

The complement of an event A in a given probability space will be denoted
by AS.

The fraction 0/0 is always interpreted to be 0.

For any number p, 1 Sp<», the conjugate exponent will be denoted by
p'(} <p'swx); that is, 1/p+1/p'=1.

For a given bounded signed measure u, the total variation of u (on the
whole measurable space) will be denoted by var(y).

The zero element of a given Banach space will be denoted simply by 0.

for n=1,2,3,...,

[1,°]": = {tpy,...s p): 1<p <= for all k=1,..., n}.

Let (Q,M,P) be a fixed probability space. By a "measure of dependence"
we mean any function d mapping pairs of sub-0-fields of M into
ﬁ+: =R u {0} u{»} and satisfying the following two natural requirements:
{0.1) For any two o-fields F and GcM, d(F,G) = sup d(FO,GO) where
the sup is taken over all pairs of finite o-fields FO cF and G0 cG; and
(0.2) d(F,G) =0 1if and only if F and G are independent o-fields.

As a consequence of eqn. (0.1), d is "increasing': If F1 cF and

GICG then d(Fl’Gl) < d(F,G).
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This paper is mainly concerned with "dominations" of measures of depen-
dence in the following sense:

We say that a measure of dependence d1 is "dominated" by another measure
of dependence d, (and we write d,{ d,) if there exists a function ¢: R +R,
such that &(0) =0, ¢ is continuous at 0, and dls¢(d2)

(i.e. dl(F,G) s<b(d2(F,G)) for all pairs of o-fields F and GcM).

If dl«s d, and dzﬁdl, then we say that dl and d, are "equivalent".

2
Note that if (Fn,Gn), n=1,2,... is a sequence of pairs of o-fields
such that dZ(Fn’Gn) +0 as n-+o, then for any dll‘ d2 we have that
dl(Fn,Gn)-»O. Conversely, if dl(Fn,Gn)-*O as n-—+« for every sequence of
pairs of o-fields such that dz(Fn,Gn) -0, then dl{ d,. (To see why, con-
sider the function &(t): = sup{d](F,G): dz(F,G) <t}.)
Stronger types of "domination' may be defined by imposing conditions on
$. For example, ¢ l1inear implies the strong condition d1 SCdz. In all cases
of domination studied in [3] and in this paper, ¢(t) may be taken as a power
td, with &6>0, for small t. This implies that if dZ(Fn,Gn) +0 exponentially
fast then so does dl(Fn,Gn). This type of property is of interest in connec-
tion with certain mixing conditions, but we shall not pursue this further in
the prcsent paper.
licre and throughout the paper, for measures of dependence d1 and dz, the
cquation dl =d2 means that dl(F,G) = dz(F,G) for all pairs of o-fields F
and G, and the equation dlsd2 means that dl(F,G) < dZ(F,G) for all F,G.
Thus d1 Sdz is technically a stronger statement than dl{ dz.
liere are some examples of known measures of dependence that we shall be

intercsted in later on. Prior to each one, the name of the corresponding

mixing condition for stochastic processes is given:
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Strong mixing,

(0.3) a(F,G): = sup|P(AnB) - P(A)P(B)|, AcF, BeG
¢-mixing,

(0.4) ¢(F,G): = sup{P(B|A) - P(B)|, AeF, BeG, P(A) >0
Y-mixing,

(0.5) w(F,G): = supl-‘-,—[(;ﬁ-})\—g%)— - 1|, AeF, BeG, P(A)P(B) >0
p-mixing,

(0.6) p(F,G): = sup|Corr(X,Y)|, Xel,(F), Yel,(6),

X real, Y rcal

Absolute regularity (“'weak Bernoulli"),

1 J
0.7) B(F,G): = supk J ¥ |P(AinBj) - P(A)P(B) |
i=1 j=1 J

wherc this sup is taken over all pairs of partitions {Al"”’ AI} and
{Bl""’ BJ} of Q such that A, e F for all i and BjcsG for all j. To
put this another way, B(F,G) = (5)-var(PFxG - PF.x G) where PFXG is the
restriction to F xG of the measure on 2 xQ induced by P and the diagonal
mapping w # (w,w) and PF’ PG are respectively the restrictions to F and G

of the measure P.

p-mixing again (see [2], [3, Theorem 1.1(ii)], or [4]),

(0.8) AGF,G): = sup LP(ANB) - P({:)P(BM, AeF, BeG,
[P(A)P(B)]

P(A)P(B) >0

Some simple dominations between the above measures of dependence are
given by simple inequalities:

a(F,G) < B(F,G) < ¢(F,G) < y(F,G)

u(F,G) < A(F,G) s p(F,G)
The domination

p(F,G) < 2:0%(F,B)




is well known (see e.g. [9, p. 309, Theorem 17.2.3}), and it has been improved
independently by Denker and Keller [6, p. 506, line 2 and p. 516, line -8]:

p(F,G)
p(F,G)

A

2emax{¢(F,G), ¢(G,F)}, and by Peligrad [13, p. 462, eqn. (4)]:

2-¢%(F,G)-¢k(G,F). Another domination, taken from [3, Theorem 1.1],

A

is as follows:

p(F,G) < CeA(F,G)+[1 - logA (F,G)]
wherc C is a universal constant.

The present paper continues and complements [3]. Now [3] was motivated
by Rosenblatt's [15, Chapter 7] use of the Riesz convexity (interpolation)
theorem to compare mixing conditions on Markov chains. Also, Lifshits
{11, Lemma 1] used the Riesz-Thorin interpolation theorem in order to
establish a moment inequality involving several measures of dependence. The
idea of [3] was to use operator theory to try to develop a unified approach
to the study of a large class of measures of dependence, and to prove "general"
domination results for this class. The main point in [3] was to consider a
particular bilinear form:

(0.9) B(f,g): = E(fg) - (Ef)(Eg)

defincd for simple functions f and g such that f is F-measurable and g is
G-mecasurable (where F and G are, say, given o-fields cM). Various norms of
the bilinear form B define a large class of measures of dependence. Fol-
lowing |3}, for 1<p,q<», for given o-fields F and G, we shall be

intercsted in the (p,q)-norm of B on F xG, namely

(0.100 R (F,6): = sup R - O]
P.q
el Nl

f simple, complex-valued, F-measurable

g simple, complex-valued, G-measurable
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Later on, we shall also be interested in a version of (0.10) using r.v.'s

. f and g taking their values in Banach spaces. We shall also consider for
. fixed 0=<sr,s<1,
3 (0.1) o (F,6): = sup [LLAB) = PAOP@)] ¢ g g
~ ’ [P(A)] [P(B)]
‘j , which is a variant of Rl/r,l/s(F’G) in which only indicator functions are
i being used. In the terminology of [16], ar,s is simply the "restricted"

(1/r,1/s)-norm of the bilinear form B.'

Of the six measures of dependence in eqns. (0.3)-(0.8) above, five can

immediately be fit into this framework, as follows:
=050 O 00 VIO A= 0, PRy,

. (The last equality p = R2 2 follows from [18, p. 512, Theorem 1.1] and a

trivial calculation; restriction to real, mean-zero r.v.'s would have no

ef fect on Rp q in the special case p=q=2).

»

The remaining one, namely B

in eqn. (0.7), will be expressed in terms of (0.9) using B-valued (Banach

“ Y4 4

space valued) r.v.'s in Section 2.2 later on.

When we wish to consider a version of (0.10) for just real-valued T.v.'s,

we shall use the notation

0.12) Ry (FLGR) = sup |E(fg) - (Ef)(Eg)|
> ' £l el

r et
]

(]
’
¥

f simple, real-valued, F-measurable

g simple, real-valued, G-measurable

A trivial calculation yields

.13 R (F,G;R) < R_ (F,G) < 4R
(0.13) p’q( ) < p’q( ) <

P,

F,G: R
q( )

(and one can lower the 4 somewhat). When we don't wish to mention F and G
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explicitly, the measure of dependence Rp q(°,°;R) will be written simply

s
as R R) .

p.q( )

In eqns. (0.10) and (0.12) the restriction to simple functions will be
convenient, but it is obviously a stronger restriction than necessary.

The following proposition is well known and quite elementary:

Proposition 0.1. If 1<p,q<«, and F and G are o-fields, then the fol-

lowing two statements hold:

(i) R _(F,G) = supllECEIG) - Efllq"
P,q
lell,

f simple, complex-valued, F-measurable

NE(£]6) - Eflqe

I

f simple, real-valued, F-measurable

(ii) Rp,q(F,G;R) = sup

Using this proposition, some results in Rosenblatt [15, Chapter 7] can be
transcribed into our language, including the following statement from

(15, p. 211, Theorem 1]: The measures of dependence Rp,p' (and Rp’p,(R)),
1 <p<w, are equivalent.

Remark 0.2. There is a nice connection between Lorentz spaces and the
measures of dependence ar,s' In this remark we shall summarize some key
points of this connection; the reader is referred to e.g. [1] [8] [19] for
the details on Lorentz spaces. In fact ar,s can be considered as a Lorent:z
space norm of the bilinear form B in (0.9). Recall (see e.g. [1]) that the
Lorentz space Lpl’ 1sp<x, may be defined as the completion of the set of
inf zilai

This definition makes sense also for p = «, and L_

. 1/p. -
PADTT: 13T, 5y =

equals Lm with

simple functions with the norm llf”p,I: f}.

,1
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an "equivalent norm" (see [1]). If 1<p<w, then the dual space of L 1
: = (£ 1/p’ - .
: equals Lp,m. = {f: Sup, .t P(|£| >t) <=}. Let p=1/r and q = 1/s.

Then o o equals the norm of B on Lplx L or, equivalently, if q <=,

‘ , ql
the norm of the linear operator E(°|G) - E(*) from Lpl(F) into Lq,w(G).
It is obvious that, with r=1/p and s=1/q, one has ar,s(F’G) SRp’q(F,C}).
On the other hand, Lpl :Lpl for every Py >p, and thus
- ar,s(F’G) 2 C°Rpl’q1(F,G) if P, >1/r and q, >1/s. (Here the constant C
depends on r,s,pl,ql.)
Remark 0.3. All of the measures of dependence d that are studied in this

paper have, in addition to eqns. (0.1) and (0.2), three other nice properties.

o ®© N N N
- (a) d( v Fos Y60 = lim d( V. F ., v,G).

E: (b) The measure d is given by a well defined formula that is applicable
on any probability space,

(c) For finite o-fields F and G the quantity d(F,G) does not depend on
the particular choice of F and G or on the underlying probability space
(2,M,P), but depends only on the matrix (P(AinBj): 1<is<I, 1<j<J)

where A.,..., A (resp. Bl""' BJ) are (in any order) the atoms of F

1’ |
(resp. G). Thus (by eqn. (0.1)) measures of dependence can be formulated in
terms of properties of doubly stochastic matrices. Some of the ''domination"
results obtained in this paper may be closely related to matrix inequalities
(of which there is already a huge theory).
Remark 0.4. Keeping in mind Remark 0.3(b) for the measures of dependence
that we study, the statement "d1 fails to dominate d2" will be used to mean

that there exists a probability space on which d, fails to dominate d,. (It

1 2
-~

- is easily seen that in such cases d1 will fail to dominate d2 on the
-

probability space {0,1] with Lebesgue measure, or on any other atomless




probability space.) To prove that d1 fails to dominate d2 it suffices to

show that for different choices of pairs of o-fields F and G, on different

choices of probability spaces, one can have dl(F,G) arbitrarily small
without dz(F,G) being (arbitrarily) small (for the same F and G). For
then by taking the product of countably many such probability spaces, one
can obtain a single probability space on which d1 fails to dominate d2 .
(i.e. on which there are o-fields Fn and Gn’ n=1,2,3,... such that
dl(Fn, Gn)-+0 as n-o but dz(Fn, Gn) fails to converge to 0).
In [3] a detailed analysis of dominations between ar,s and Rp,q was
given in the "lower triangle", r + s<1 resp. 1/p + 1/q<1. In par-
ticular it was shown that among these measures of dependence in the lower
triangle there are only four equivalence classes. Section 1 of this paper

will complement that analysis, There, in Section 1.1 it will be shown that

[3, Theorem 3.6] (one of the main tools for the study of measures of depen-

dence in [3]) is within a multiplicative constant of being sharp. In Section .
1.2 it will be shown that for a. and Rp q in the "upper triangle",

’ »
r+s>1 resp. 1/p + 1/q>1, there arc no equivalencies except for the

well known one o =R In Section 1.3 a short proof of [3, Theorem 2.2]

1,1°

2 is given, using a three-step "reiteration" technique. Section 1.4 contains
sharp domination results for the case where onc of the two o-fields is
finite with only two atoms, each having probability .

Section 2 is devoted to measures of dependence basgd on B-valued (Banach
space valued) r.v.'s. In Section 2.1 a preliminary discussion is given., 1In
Section 2.2 the dependence coefficient B (in eqn. (0.7)) will be fit into
this B-valued scheme, and it will also be shown that if p>1 and q>1
then Rp q fails to dominate B. In Section 2.3 we drop an unnecessary assump-

]

tion made in [3, Theorem 4.2].

........
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SECTION 1: THE SCALAR CASE

In Section 1 here we study measures of dependence based on random variables
taking scalar (i.e. real or complex) values, namely the measures of dependence
Rp’q(F,G) and Rp,q(F,G;]U from eqns. (0.10) and (0.12). Because of eqn.
(0.13) we really only need to discuss one of these two (families of) measures;
following [3] we shall discuss Rp,q(F,G) {(which uses complex r.v.'s). Of
coursc the measures a. will also be part of this discussion, which is in-

tended to complement {3].
SECTION 1.1: SHARPNESS OF A DOMINATION RESULT

Section 1.1 here is the only part of this paper in which measures of
dependcnce between more than two o-fields will be included. 1In [3], Theorem
3.6 was a key tool for comparing some measures of dependence between two or
more o-fields. Here, for any given choice of parameters meeting the specifi-
cations in [3, Theorem 3.6], we shall show that [3, Theorem 3.6| is within a
constant factor of being sharp. The sharpness (in the same sense) of |3, Theo-
rem 2.1] follows as an indirect consequence. (Otherwise a sharper version of
Theorem 2.1 would lead to a sharper version of Theorem 3.6 by the same proof,
and this would contradict the example given below.) The nature of the example
given below is such that it also confirms the sharpness (in the same sense) of
[3, Theorem 4,1(vi)].

Before stating the result, let us recall some terminology from [3]. Sup-

pose (22,M,P) is a probability space, and Fl’ F Fn are o-fields cM,

grrees
Supposc  B: S(Fl) X, W% S(Fn) + € is an n-linear form, where S(F) denotes
the sct of (equivalence classes of) F-mcasurable complex-valued simple func-

tions. Suppose p: = (pl,..., pn) where 1 Spk so for all k=1,..., n.

Then we define (as in [3]),

R R S S L T T T TN TN T W T v
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|B(£,.., £)]

: e e
N
N f ...t If
1 Py n'P,
: fkeS(Fk) for all k=1,..., n
i
)]
)
lB(IA L IR IA)I
(1.1.2) d_ (B): = sup 1 n
& T ety
1 A n 'n
Ak eFk for all k=1,..., n

. Theorem 1.1.1. Suppose n=22 is an integer and 15pks°°, k=1,..., n.
j Define p: = (pl,..., pn). Then there exists a constant C depending only on

p such that the following holds:
. For each t, 0<t<1, there exists a probability space (Q,M,P) and

o-fields Fl,..., Fn<:M, and an n-linear form B: Lw(Fl) X, .. Qm(Fn) +C

n

(namely B(fl""’ fn). = E(f1 cen fn) - Hk=1 Efk) such that dEFB) <t
< c .
; and ||B||22Ct(1 - logt)" where c: =3I, 1/p} with K: = {k: 1<p, <=},
y The constant exponent ¢ here also depends only on p and is exactly the
: same as in [3, Theorem 3.6]). (Thus |3, Theorem 3.6] is within a constant
. factor of being sharp. See also the Addendum on p. 52 of this report.)

Proof., 1If Py € {1,2} for all k=1,..., n then the theorem becomes

N trivial. So we assume that 1 <pk<°° for at least one k.
N For each p, 1l<p<®, and each v, 0<v<l, define the function )
y G_ _: [0,1]1+[0,1] as follows:
. v,P N
. G (x): = min{x,vxl/p} for 0sxsk
: v,p
. G (x): =G, _(1-x) for ¥sx<1

'v,p v,p

Note that G is concave and increasing on [0,%] and hence G is concave on

[0,1].
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For 1<p<o and 0<vs) define the function gvp: (0,11 +[-1,1]

R .
by gv’p(x). = Ix Gv,p(x)' That is,

(1.1.3) 1 if 0<x<vP'
ve(1/p) -x'llp' if vP' <x<lk
gV p(x): = -1/p' '
’ -ve(1/p)+ (1 - x) if <x<l-vP

?
-1 if 1-vP <x<1

(

] ]
fv’p is not defined at x=0, vP , ¥, 1 —vp , 1.) Then gv,p is non-increasing,
fogv’p(x)dx =0, and Igv"p(x)l <1 for all x at which gv’p(x) is defined.

If 0<vs) and p=1 or », define the function

gy,p} [0:11>1-1.1] by
(1.1.4)
1 if O0<x<lg
B, p ()" - { -1 if Yj<x<1

. . . . 1
In this case too, gv,p is non-increasing, Iogv’p(x)dx-o, and Igv’p(x)l <1,
The following integral will be used later on. If O<vs<)% and 1<p<w,

then

(1.1.5) ?) |gv,p(x)|P'dx = Vp'[l + (l/p)P'(logli - p' logv)]

Now let us get to the main part of the argument.

llenceforth m denotes Lebesgue measure on [0,1].

Let t, 0<t< (35)n be arbitrary but fixed. (There is no loss of
generality in specifying 0<t< (lg)n rather than 0<t<1 as in the statement

of Theorem 1.1.1.)

Define v, 0<v<k, by

vcard{k: 1<p(k) <e} _ :

(1.1.6)
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Define the probability spjace (Q,M,P) as follows:
: = [0,1]™: = [0,1] x [0,1] x...x [0,1]. M is the o-field of Borel subsets

of . P is defined by

N
~,
=
[
L]
’,
r.
,Q
’:
o,
i Q
-
&
!
X

n n
P(A, X...x A)) = k1=11 m(A,) + kEIIAkgv’pk(X)dx

for all Borel subsets A,,..., A <[0,1]. (Recall the inequality Igv’pk(x)l <1
mentioned above.)

Note that since fégv’p(x)==0, each of the marginal distributions of p
is uniform on [0,11.

For each k=1,..., n let Fk be the o-field generated by the kth coor-

dinatc in 2. Define the n-linear form B: g»(Fl) X, 0% Lw(Fn) + € as follows:

n

B(fl,..., fn): = E(f1 RS fn) - kEIEfk

Proof that dB(B) < t:

Suppose D eFk, k=1,..., n with P(Dk) # 0. For each k, represent

D, by D.: = [0,1] x...x [0,1] x B, x [0,1] x...x [0,1] (where the k"
coordinate-set Bk is a Borel subset of [0,1]). Then
n
lB(lDl,..., IDn)l = kgllfakgv,pk(x)dx[
s kEIIIE(B"):;‘,J,k(x)dx]
m(Bk)
) [{k:l<gk<°°}c""’k(m(8kn].l{k :pkgl or°°}[ 0 g""’k(xm“

sT 0 vem@OMPRLL u el 1 1]
{k:1<pk<°°} {k:pk=1} {k:pk=°°}
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. n
» - vcard{k.l <p(k) <°°}. I “ID "p
2 k=1 Dx Py
mL, |
=t I ||1
k=1 D Px

by eqns. (1.1.3), (1.1.4), and (1.1.6) and the fact that for each 0<v<l,
lsp<e the function g, P is non-increasing (as noted earlier) and odd-
]

symmetric. Thus dB(B)st.

Proof that ||B||Rz Ct(l-1logt)® (for some constant C depending only on
P). (Here ¢ is as in the statement of Theorem 1.1.1.)

Define the r.v.'s fl,..., fn as follows:

fk(xl""’ xn) : gv,pk(xk) if pk=1 or

. P/Py
£ (x)s.00s x ) i= [sign gv,pk(xk)]"g\l,pk(xk)l if 1<p, <=

N To shorten the notation below, we write fk(x) instead of
:: fk(xl,..., X1 X0 Xy xn). Note that for each k, fk € Lw(Fk).
- Now
1
\ B(f,,..., £) = T f.(x)g (x)dx
- ! "oke1o K VR

i 1
K For each k such that P = 1 or =, fofk(x)gv,pk(x)dx = 1 and
e, = NNl = 1.
: 1 < 2.[4 Pk
For each k such that 1<p, <=, 0fk(x)gv’pk(x)dx-z folgv’pk(x)l dx

- o1/Px, Pk 1/Py
and ||fk||pk— 2 [f‘glgv,pk(xﬂ dx] .

Hence

B(f , £) =

]
1-1/p Pl . 41-1/P
poees £ = M2 kl({lgv,pk(x)lkdx] ]

{k:l<p, < o}

P A AT

4 8
-

-

n o=

[

o®

=
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For each k such that 1<pk <o,
7 P Py
x dx 2C,*v Kk (1-logt
Olgv'pk( )l k ( gt)
Py P,
by eqn. (1.1.5), where Ck 1= min{1l + (l/pk) k logk, (1/n)-(l/pk) k).
(Note that Ck is positive and depends only on p.)
n
Hence by eqn. (1.1.6), B(f,,..., £ ) 2 Cste(1-1logt) e N ||£ ||
1 n ] k=1 k pk
where ¢ is as in Theorem 1.1.1 and C := n cM/Pk (which is positive

{k:1 <p <=}
and depends only on p).

Now trivially the supremum of IB(fl,..., fn)|/(||f1 ||pl-...-||fn||p ) is
the same over (fl,..., fn) € S(Fl)x“.x S(Fn) as over

L(F)) x...x L(F ). Hence ”B"P. 2 Cets(1-10gt)S. This completes the proof.

Remark 1.1.2. [3, Theorem 3.6) holds for n=1 as well as for n22, by
a simple argument similar to the proof of [3, Theorem 2.1 or 2.2]. Also,
[3, Theorem 3.6] is within a constant of being sharp for n=1, as one can show

with a slight modification of the above example.
SECTION 1.2: DOMINATIONS IN THE UPPER TRIANGLE

The following definition will be needed: For any point (r,s) such that

0O<r,s<1, and r+s>1, define Q(r,s) to be the closed (convex) quadri-

lateral region with vertices (0,0), (1,0), (r,s), and (0,1).

Remark 1.2.1., Statements (a)-{(g) below give a complete picture of what
dominations (or equivalencies) exist for any two of the various measures of
dependence ar,s and R . with 0sr,s<1 and 1sp,q<s«. This whole
picturc can be pieced together from [3, Theorem 4.1 and Remark 4.1} and Pro-
positions 1.2.2-1.2.6 given below; to do so, one should keep in mind the

trivial facts that for any two o-fields F and G, o s(F,G) < R (F,)

1/r,1/s




and a. s(F,G) and Rl/r,l/s(F’G) are each non-decreasing as r or s increases.

(In particular, the problem mentioned in the last sentence of [3, Remark 4.1]

MRghe e caaataian

is solved.) The restrictions 0<r,s<1 and 1<p,q<® are to be implicitly
understood.

(a) The measures of dependence A s T*s <1, and Rp q’ 1/p+1/q<1,

’

are equivalent; and they do not dominate any of the other measures of dependence

ar’s and Rp,q'

(b) The measures of dependence « 0<r<l1, and Rp p'’ l1<p<eo |

r,1-r’
are cquivalent; and they dominate a s T*S <1, and Rp , 1/p + 1/q<1;

but they do not dominate any of the other measures of dependence @ and
’

R .
P»q

(¢) 01,0 and Rl,a° are equivalent. ao’l and Km

Neither a dominates a , hor vice versa.
1,0 0,1

measures of dependence ar,s’ r+s<1, Rp,q’ 1/p+1/q<1, ar,l—r’ 0<r<l,

and Rp pt? 1 <p<w, Neither a o MOT a5 dominates any of the measures of

dependence ar,s’ r+s>1, or Rp,q’ 1/p+1/q>1.

(d) A 4= R1 T and these measures of dependence dominate all of the

p are equivalent.
?

al’o and ao’l each dominate the

other ones o and R
r,s P,q

(¢) If O0<r <1 and r,+s,>1, then a dominates a and

0°%0 0 °0 050 r,

Rl/r,l/s for all (r,s) eQ(rO,so), except that aro’so fails to dominate al,O’
Rl’m, aO,l’ Rm’l, or Rl/ro,l/so' For such (ro,so), Rro’SO dominates ar,s and
Rl/r,l/s for all (r,s) eQ(ry,s)), except that Rro’so fails to dominate a
1,000 ao’l, or Rm,l. Also for such (ro,so), neither arO’SO nor Rl/ro,l/so

1,0°
R

dominates a. s or Rl/r,l/s for any (r,s) lQ(ro,so).

’

(f) If 0 <s0 <1, then all of Remark (e) holds verbatim for T, =1

(i.e. for the point (ro,soj =(l,so)), except that a {and hence Rl,l/so)

).

l,so

dominates al 0 (and hence also R

1,
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(g) If 0<ro< 1, then all of Remark (e) holds verbatim for s0 =1
(i.e. for the point (ro,so) = (ro,l)). except that aro,l (and hence Rl/ro,l)
dominates ao’l (and hence also Rw’l) .
The portion of this picture involving only . g» T*s <1, and Rp qQ’
» td

1/p+1/q s 1, was summarized in [3, Theorem 4.1 and Remark 4.1]. (Some of

that portion was already previously known.) The equation « is well

1,181
known and elementary. What we have to do here in Section 1.2 is focus on the
measures of dependence ar’s, l1<r+s<2, and Rp,q’ 1<1/p+1/q<2. For
these particular measures of dependence the (positive) domination results men-
tioned in Remark 1.2.1(e)(f)(g) follow immediately from interpolation theory.
Since our (probability) terminology is different from the usual terminology of
interpolation theory, we shall provide some of the details for the reader's
convenience, in the form of Propositions 1.2.2-1.2.3 below. Then in Proposi-

tions 1.2.4-1.2.6 below, we shall give counterexamples to show that no other

dominations occur for these measures of dependence.

Proposition 1.2.2. Suppose O0<sr »T,,S8, <1. Suppose that each of the

1’71

00
following two statements (i) and (ii) holds:

(i) Either r0=r1=1, or rofrl.

(ii) Either so=sl=1, or 510#51.

Suppose 0<8 <1, Define r and s by r := (1 —(3)r0+6)r1 and s := (1 -a)so+esl.
Suppose that the equation r+s >1 is satisfied. Then for some constant

C = C(ro,rl,so,sl,e), one has that for every pair of o-fields F and G,

R

1-0 )
1/‘1‘.1/8“:’6) < Cla, .So(F’G” .[al‘l,Sl(F’G)]

0

In the case ro;‘r1 and 50#51, Proposition 1.2.2 is an application of

{19, Theorem 2.9] (and Remark 0.2). (The bilinear form B in eqn. (0.9) can be




."r‘l.

e
.t st
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seen as a bilinear operator into Lp(nl’Fl’pl) where Ql is trivial, consisting
of just a single point; with this interpretation B "fits" the hypothesis of
[19, Theorem 2.9].) In the case =T =1 and 50#51, one can take Ty and
r, out of the picture by an application of, say, [3, Lemma 3.7(i)], and then
apply |19, Theorem 2.9] in an appropriate way to deal with Sg» S and s. The

1
other cases in Proposition 1.2.2 are then obvious.

Proposition 1.2.3.

(i) If 0'<r0,so'<1 and Ty + S, >1, then aro,so dominates Rl/r,l/s for
every (r,s) €Q(rg,sy) - {(1,0),(xy,84),(0,1)}.
(ii) If 0 <so<<1 then al,so dominates Rl/r,l/s for every
(I‘,S) 6Q( 1 ’50) - {( 1 ,50);(op1)}.
(iii) If 0'<r0'<1 then aro,l dominates Rl/r,l/s for every
(r,s) €Q(rox 1) - {(1,0),(!’0, 1)}-
Proof. The proofs of all three parts are similar, so we shall only prove
(i). Let S1 denote the line segment with endpoints (ro,so) and (1,0), and let
S2 denote the line segment with endpoints (ro,so) and (0,1). Recall that
(trivially) « <1 and a <1. By Proposition 1.2.2, a dominates
1,0 0,1 0,50
Rl/r,l/s for every (r,s) e[SluSZ] - {(ro,so),(l,O),(O,l)}. Also, trivially,
arO'so dominates a0,0 and hence also measures Rl/r,l/s’ r+s<1 (which are
equivalent to Ay o 38 noted in [3, Remark 4.1]). Finally, the remaining points
(r,s) in the interior of Q(ro,so) each lie on some line segment with one end-
point on [SIUSZ] - {(ro,so),(l,O),(O,l)} and the other in {(r,s): r+s<1},
and hence by the multilinear Thorin interpolation theorem (see e.g. {1, p. 18,
Exercise 13)) aro.so dominates Rl/r,l/s for every such point (r,s).
Now we are ready for the construction of counterexamples. A few trivial

facts are worth keeping in mind. The quantity |P(AnB) - P(A)P(B)| remains

unchanged if A is replaced by Ac, or B by Bc; consequently, one always has
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r -y
sup | P(AnB) ;P(A)PﬁB)L
[P(A)] [P(B)]

a_ _(F,G) =
r,s AeF, BeG,

P(A) <%, P(B) s %
L J

Also, if F and G are finite o-fields, each having exactly two atoms, then

Y Yy lrl' LML

= Rl/r,l/s(F’G) < 4ar,s(F,G) by a trivial argument.

Proposition 1.2.4. The following two statements hold:

(i) If 1<pse then Rp 1 does not dominate a5

(ii) If 1<qso then R does not dominate o, ..
1,q 0,1

Proof, By symmetry it suffices to prove (i). For each €, 0<ge<l,
e there exists a probability space and a pair of finite o-fields
-~ F={Q,AA%, ¢} and G = {Q,B,B%,¢} such that P(AnB) = P(A) = € and

P(B) = %; and by a direct calculation, Rp 1(F,G) < 4a (F,G) = ael/P'

1/p,1

and a 0(F,G) = }s, Statement (i) follows, and this completes the proof.
- Proposition 1.2.5. Suppose 0<r,,s
(r,s) ¢ Q(ro,so). Then R

,r,s <1, ro*so>l, r+s>1, and

does not dominate ar s

]

l/ro,l/s0
Proof. Let ax+by=c be an equation of a line containing (ro,so) and

onc of the points (0,1) or (1,0), such that the points (0,0) and (r,s) are
in opposite half-planes determined by that line. By the assumptions in Pro-
position 1.2.5, we can (and do) take a,b, and ¢ all positive. Thus ar +bs >c.
Also (since r0+ s0 >1) we have that c =max{a,b}. Define €>0 by the
cquation ar +bs = ¢ +€,

_) For each n sufficiently large, there exists a probability space and a

2 pair of finite o-fields F = {Q,A,AS,¢} and G = {Q,B,B%,$} such that

: P(A) = n"®sk, P(B) =n sk, and P(AnB) = n " + n""€. For such an n
it can easily be checked that R

. P >
S (F,G) < 4a s (F,G) = 4n

‘%
LY I
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and that a, s(F,G) = 1. Proposition 1.2.5 follows.

Proposition 1.2.6. Suppose that 0<r,s<1, r+s>1, and either r<1

or s<1. Then ar,s does not dominate Rl/r,l/s'

Proof. By symmetry, without loss of generality we can (and do) assume

that r<1. (So we allow the possibility s=1.)

(In what follows, the symbols m, ¢, and Y do not take their usual
meanings.)

Define the probability space (Q,M,P) as follows: Q := [0,1]x{0,1}
(the union of two disjoint intervals); M is the o-field of Borel subsets of

2, and P is defined by

(1.2.1) P(Ax{0}) := [¢(x)dx and P(Ax{1}) := [(1 - ¢(x))dx
A A

for every Borel subset Ac [0,1), where

T+ y(x) if xe[0,%]
(1.2.2) ¢(x) :

mT - 2-7w(u)du if xe (%,1]
0

where 0<7m<% and

r-1

£X if a<x<b
v(x) :=
0 otherwise
where
[
S S
(log 1/m 1T
a = ggn®/ (17
b := (ntl=9)/T
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Note that by our assumption r+s>1 and simple arithmetic, we have that

0O<a<bsY%. Also, for m sufficiently small, one has that Z-fgw(x)dx sw
and yY(x) sk for all xe [0,%], and hence 0s<¢(x) s1 for all xe [0,1].
Consequently, for m sufficiently small, eqn. (1.2.1) does indeed define a
probability measure. (We restrict m to such small values.)

Define the '"marginal" o-fields F and G by

F :

{Ax{0,1}: Ac[0,1] Borel set}

{fo,1} xB: B = {0,1}, {0}, {1}, ¢}

G :

Define the event Bj := [0,1] x {0}. Note that the marginal of P on [0,1)

is Lebesgue measure, and that P(Bo)

We shall first get an upper bound on a S(F,G). First a preliminary cal-

’

=1|’<3§,

culation will be handy. The function ex" " is non-increasing on (0,®). Also,
¢(x) -1 is non-negative if 0<x<Y%, and negative if instead Y% <xs1. Hence,

letting m denote Lebesgue measure, we have that for every Borel subset Ac{0,1],

flo) -1ldx s [ wdx s [ ex"lax
A

An[0,%] An[0,%]
m(An[0,%))
< } exr-ldx
0

= (e/r)+[m(An[0,%])]" = (e/r)+[m(A)]"

and

s
-m(An(3,1]) <2+ fy(x)dx

v

flo(x) - m}dx
A

0

1
> -m(An(k,l])-2'7€xr-1dx
0

= -(e/T) *m(An(i,1]) () !

2 -(c/r)-m(An(k,l])'[m(Aﬂ(%.ll)]r-l

2 -(e/r)[m(A)]"
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and hence |]A[¢(x) -m)dx| s (e/r)-[m(A)]F.

Consequently, it is easy to see that

|P(AgBy) - P(A)P(B) ]

r S
[P(A) 1T 1P(B,) |

ar,s(F’G) sup

AoeF

|[,¢(x)dx - [m(A)]em]|

[m(A) ] on®

= sup

Ac[0,1] Borel set

b ¢ sup LD [m))”
[m(A)}"en®

Ac [0,1] Borel set

1
re(log 1/m T

Note that ar,S(F,G) becomes arbitrarily small for w sufficiently small. (We
are using our assumption r <1 here.)

Now we only need to show that Rl/r,l/s(F’G) fails to become small with m.
By Proposition 0.1 and symmetry, we have for p := 1/r and q := 1/s (so that

1/p' =1 -71),

ECg|F) - Egll ),

R (F,G) = sup
P-d gl

g complex-valued, simple, G-measurable

llEIRyIF) - Elgg |




Uglew - nlP axy /P’

(]

)
v

PP ax /P’

S
LU

[ eex™ )P ax) "

S
n

e~ [f2xaxy T

s
ﬂ
= 1 T (logb/a)l-r
(log 1/m)
1 l-s s l-r
= 1-1 ¢ [( T - l-r)(mg ")]
(log 1/m)
S l1-s,1-r
= Gz
Since r+s>1, it follows from elementary arithmetic that T%;-— lii- is a

positivc constant. lence Rp q(F,G) fails to converge to 0 as T -+ 0. This
»

complctes the proof,

SECTION 1.3: APPLICATION OF THE REITERATION PROCEDURE

Here we give another proof of [3, Theorem 2.2]. The proof is rather simple
but requires more interpolation theory, and seems to be harder to generalize to
the multidimensional case as in [3, Theorem 2.1]. (Such a generalization of the
proof might be possible if one uses as a tool a version of Zafran's [19, Theo-

rem 2.9] multilinear Marcinkiewicz interpolation thcorem with an explicit upper
bound on the constant.) We shall restate [3, Theorem 2.2] in a somewhat loose
form (applicable to some other contexts besides probability spaces); the main

emphasis is on the proof,

. .
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Theorem 1.3.1, Suppose T is a linear operator, 1<p<w, and
(1.3.1) T: L1+L1 with norms1,
(1.3.2) T: L, +L_with norms<1,
(1.3.3) T: Lp-*Lp’oo with norm< g€ < 1.
Then
(1.3.4) T: Lp->Lp with norm < Ce(1 + log l/€)1/p where C depends only on p.

Note that eqns. (1.3.1) and (1.3.2) imply (1.3.3) and (1.3.4) for €=1 by
standard interpolation theorems (see {[1]). The point of Theorem 1.3.1 is that a
small norm in eqn. (1.3.3) forces the norm in eqn. (1.3.4) to be almost as small,
i.e. within a log term. (For the definition of the Lorentz space Lp’w, see e.g.

[1] or [19].)

Proof. Throughout this proof, the letter C is used only for multiplicative
constants which depend only on p. The value of C may vary from one appearance
to the next.

The trivial cases €=1 or 0 can be omitted. Moreover, to cover the re-
maining cases, without loss of generality we can restrict € to small values.
llenceforth, we impose the condition e<e ?

Let 6=-1/(loge). Then 0<§<l. Define P, and P, by
l/p0 = (1-8)/p + 6/1 and l/pl = (1-8)/p + §/=. Then 1<p0<p<p1<°°.

Now we apply the Marcinkiewicz interpolation theorem twice, each time with an
explicit upper bound on the constant in that theorem; see e.g. [20, Chapter 12,
Theorem (4.6) and eqn. (4.2.1)]. In that way, by eqns. (1.3.1) and (1.3.3) we

obtain T: L -+L with normsC(l/G)l/posl'(S

Po Po
we obtain T: L_ ~» Lp with norm<C(1/6)
1 1
0<B<1 and 1/p=(1- 6)/p0 +0/p1. By applying the Riesz (or, in the complex

and by eqns. (1.3.2) and (1.3.3)

VP1e1-8 et 8=1-1/p. Then

case, Riesz-Thorin) interpolation theorem (sce [1]) we have that T: Lp->Lp
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with nomsC°(1/6)1/pel'6= C(-loge) 1/p-r»:-t-:"‘|ssc(—1¢)gs:)llp > (since 5'6

=e).
This completes the proof.

SECTION 1.4: A SHARP DOMINATION INEQUALITY

Here our aim is to find a sharp upper bound on Rp,p' based on al/p,l/p' in

some cases where one of the two O-fields has two atoms. This complements Section

4.4 of [3].

Theorem 1.4.1. Suppose F and G are o-fields, with G being of the form

_nC
G = {Q,BO,BI,M where P(B)) =% and B =B;. If 1<p<e then

(F,G) < 2a

. - lp' ) l/P'
Rp,p' l/p,l/'p'(F’G) 1 (P) P log(Zal/p’l/p,(F,G))] .

Further, this inequality is sharp; for each ae¢ [0,%] there exists a proba-
bility space with o-fields F and G = {Q,Bo,Bl,cp} where P(BO) =% and

Bl=88, such that a (F,G) = a and

= - lp' ' 1/p'
1/p,1/p' pr (F,6) = 2al1- () p' log(2) ] ¥

R
P,

In particular, referring to eqns. (0.6) and (0.8),
o(F,G) s 2A(F,G)+[1 - % log (2A(F,G))]® .

Under the hypothesis of Theorem 1.4.1, one automatically has that
al/p 1/p,(l-',G) <%. By the comments prior to Proposition 1.2.4 in Section 1.2,
’
in evaluating al/p 1/p,(F,G) one only needs to consider events A and B with
b

probability <)% . Since 0<x P(AnBo) sP(A), one has that if P(A) <% then
1 ]
|P(AnB,) - PAIP(B)| s CaIP(A) s (o) [P(A)]/PLp(By)) /P
(where B0 is as in Theorem 1.4.1). Consequently al/p,l/p'(F’G) cannot exceed
% under these circumstances.

The proof of Theorem 1.4.1 will be given at the end of this section and will

be based on some preliminary lemmas.

.....
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We start from the purely discrete case, when F (as well as G of course) is

tfinitely generated. The reasoning is close to that in [12]. We use the extreme

point method and the following version of the Krein-Milman theorem:

Theorem A. If Ke R" is a compact convex set, then for each xeK

there cxist extreme points Xpseeor Xooq of K and non-negative numbers
n+l, _ on+l
Al, e An+1 such that zi=1)‘i =] and x = zi:l}‘ixi'

(Recall that xeK is called an extreme point of K if x cannot be represented
as a non-trivial convex combination of points of K.)

We shall be interested in a particular compact convex set of probability
measures on a certain measurable space, Let ae[0,%] and r,se[0,1] be
fixed, and suppose m is a fixed positive even integer. Define the sets
Ql := {1,2,..., m} and 92 = {0,1}. The measurable space will be QIXQ

2
(accompanied by the discrete o-field). For ease of notation we shail denote

A, := {i}, i=1,2,..., m, and By := {0}, B, := {1}. Let X be the set of

all probability measures on Ql xﬂz such that

(1.4.1) P(AiXQZ) =1/m for all i=1,..., m,
(1.4.2) P(Q, xBy) = P(Q xB)) =%, and
(1.4.3) |P(AxB) - P(AxQ,)P(Q, xB)| = a-[P(AXQZ)]r-[P(Ql xB)]®

for each pair of subsets Ac{l,..., m}, Bc{0,1}.

Clearly K can be regarded as a compact subset of Rm'l. Note that K is

convex too. If Pl’ P2 eK and 0<X<1, then the probability measure

P := (1 ')‘)Pl +)\P2 satisfies eqns. (1.4.1) and (1.4.2), and since the marginals

of Pl and P2 (and hence also P) are equal, eqn. (1.4.3) is also satisfied by P,

and hence P eKk,

We shall be interested in the o-fields
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Fm 1= {Axﬂz: Ac{1,2,..., m }} and
(1.4.4)

Gm = {leB: Bc{0,1}}.

(The subscript m serves as a reminder of the parameter m on which Ql xnz is

based.) K is the set of all probability measures on Ql xszz with uniform mar-

ginals such that ar,s(Fm’Gm) < o.

Lemma 1.4.2. LEach extreme point Pe¢K has the form

P(Asciy By) = 1/(2m) + F(i/m) - F((i-1)/m) for lsism/2,

P(Ac(i) xBl) =1/m - P(Ao(m+1-i) xB) for m/2+1 Sism,
where ¢ is a permutation of {1,2,..., m} and F(x) := min{x/2, a2 °x}.

Sketch of proof. Each PeK is uniquely determined by the numbers

Ai t= P(Aixsl) -1/(2m), i=1,2,..., m. By eqns. (1.4.1) and (1.4.2) these

numbers satisfy

m

(1.4.5) } A, =0 and
. 1
i=1

(1.4.6) o] s (2m7! for all i=1,..., m.

Since the property of being an extreme point of K is not affected by the

order of numeration of events Al’AZ’“” Am, to prove Lemma 1.4.2 we may

assume without loss of generality that A1 2A2 2...2 Am‘ By eqns. (1.4.3)
and (1.4.6) we see that a given sequence of numbers A1 2A2 2...2 Am corres-

ponds to a probability PeK if and only if (1.4.5) and the following two

equations hold:

k
.k k,r _-s
(1.4.7) For all k=1,..., m, izlAi < mm{z_m yar ()2 1,
v k k.r .-s
(1.4.8) For all k=1,..., m, T (-4,) < min{z=, a<(>)"-27%}.
. i 2m m
i=m+1-k
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Using this information, one can check with a little elementary work that the

unique extreme point P of K which satisfies Alz A2 2 ... ZAul is the one in

which equality in (1.4.7) and (1.4.8) is attained for all k=1,..., m/2, i.e.
Ai = F(i/m) - F((i-1)/m) for all i<m/2,

(1.4.9)

A, = -A

i n+1-i for all izm/2+1,

where F is as in the statement of Lemma 1.4.2. The lemma follows.

Remark. Referring to the proof of Lemma 1.4.2, in the case where
r+s=1, the extreme point PecK given by eqn. (1.4.9) has the property that
for A= {l,..., m/2}, P(AnB)) - P(A)P(B,) = a-[P(A)]r[P(Bl)]S and hence
(for this P) ar,s(Fm’Gm) = @, (See the paragraph preceding Lemma 1.4.2.)

The same holds for any other extreme point of K with an appropriate modification

of the event A.

Lemma 1.4.3. Let Al""’ Am now be fixed as in eqn. (1.4.9). 1If
1<p,q<», then for any probability PeK we have that
m
p'\1/p' 1/p
Rp,q(Fm,Gm) < 2(.2 |Ai| ) m
i=1
(where Fm and Gm are as in eqn. (1.4.4)). Moreover, equality is attained for

any extreme point P of K.

Proof. By Theorem A, each probability PeK can be represented as a
finite convex combination of extreme points of K, i.e. P = Zo)\opo where
ZGAO =1, )\0 2 0, and the P0 are the extreme points, given by Lemma 1.4.2.
Here 0 is ranging over all permutations of {1,2,..., m}.

Since the probability measures in K all have the same marginals, we have

that for any Pe¢K and any r.v.'s X and Y on Ql x 92 such that X is Fm-

measurable (i.e. a function only of the first coordinate) and Y is Gm-measura-

ble (i.e. a function only of the second coordinate),
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| [XYdP - fXdP[YdP| < (Z, Al [xydp - [xdp_[vap |

s max_| [XYdP - [XdP_[YdP ]
1
< a+(f|x|Pap ) ’P-(flqudpo)l/q
where a := supy y|[XYdP_ - fxapof\{dpwl/(l|x||p vl )

(the sup being taken over X and Y as above). Note that a depends on m but
is not dependent on O,

If X and Y are as above and we add a constant to Y, then
IIXYdP0 —fdeondPol remains unchanged; but ||Y||q can be minimized (under
addition of a constant) by centering it at expectation. This latter fact fol-
lows from the nature of the o-field Gm (i.e. two atoms, each with probability

%). Consequently,

a = sup, 2| [xYdP_|

where Y := IB - % and the sup is taken over all Fm-measurable X such that
X =1.
Il

From the representation X = Zm

A N | we see that a is the maximum of
i=1"1 Ai
the function f(x,,..., x ) := 2TT x.A. under the restriction
1 m i=1"171
L ]
(}:';'=1|xi|p)l/p = m/P. It is well known that this maximum is 2m1/p(Z'in=1|Ai|p )I/p .

Lemma 1.4.3 (both parts) is now easy to see.

Lemma 1.4.4. Suppose that 0sr,s<1 and 1<p,qs«, Suppose that F and
G are o-fields on some probability space, where G has two atoms B and Bc, each
having probability %. Then there exists a sequence P2,P4,P6,... of probability
measures, where for each (even) m the measure Pm is defined on

{1,2,..., m} x{0,1} and has uniform marginals, such that
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. ’ ar’s(F,G) = limm*w ar.s(Fm,Gm)

' R, o(F:0) = lim R (F.6,)

i where for each (even) m thé o-fields Fm and Gm are as in eqn. (1.4.4) and
, ar,s(rm’Gm) and Rp,q(rm’Gm) are as defined with respect to the probability

measure Pm. (In the two limits, m is restricted to even integers.)

Proof. By an elementary argument based on eqn. (0.1), one can show that
5 it suffices to prove this lemma in the case where F is itself a finite o-field.
We shall henceforth make that assumption on F. Enlarging the given probability
space if necessary we may assume without loss of generality that there exists a
r.v. U which is independent of FVG and has a continuous distribution function.

o By an elementary argument,

ar’s(Fvo(U),G) ar’s(F,G) and

(1.4.10)
R Fvo(U),G) = R F,G
P.q( ©).6) P.q( )
.,
N (where o(...) denotes the o-field generated by (...)).
‘
: Let Z be a Fvo(U)-measurable r.v. with a continuous distribution function

n
FZ( ), such that Fco(Z). (For example, take Z = Ei=llA(i) fi(U) where

A(l),..., A(n) are the atoms of F and fl,..., fn are suitably chosen func-

oSt St

tions.) Then as a consequence of eqn. (1.4.10) we have that

ar,s(o(Z),G) =a s(F,G) and

- ,G) = R ,6).
: Rp,q(0(2):0) = Ry (F.O)

Now consider the probability measure P on [0,1] x{0,1} induced by the
random vector (FZ(Z),IB) (where B is one of the atoms of G). Then P has

uniform marginals, and defining the o-fields F* and G* generated by the first

and second coordinates of this new probability space, we have that
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. ar,s(F‘,G') = ar’s(o(Z) ,G) = ar,s(F’G) and

‘ . * = =
Ry,q(F*:6" = R, ((0(2),6) = R (F,6).

For each even m let F; denote the sub-o-field of F* generated by the events

{((d-1)/m,i/m) x{0,1}, i=1,2,..., m}. Then

. * - * -
: lim ar’s(F;,G ) = ar,s(F ,G*) = ar’s(F,G) and
y (1.4.11)

i R F*,G*) =R F*,G*) = R F,G).

lim p,q( nC) p,q( ) p,q( )

Now if for each even m we define the probability measure Pm on
{1,2,..., m}x{0,1} by P (i} x{j}h = P(((i - 1)/m,i/m) x{0,1}), i=1,2,...,m,
j=0,1, then it is easy to see that as a trivial corollary of eqn. (1.4.11)

these measures Pm satisfy the conclusion of Lemma 1.4.4.

Proof of Theorem 1.4.1. To prove the inequality in Theorem 1.4.1, by

Lemmas 1.4.3 and 1.4.4 it suffices to notice that if 0<r<l1l, s=1-r, p=1/r

and hence p'=1/s, then

, /P, 5 14 (PP _ . Lp', 1/p'
lim _2m (izllAil ) = 2a+[1 - ()7 p' log (20)]

(where Al”“’ Am are as in eqn. (1.4.9)).
To prove the second part of Theorem 1.4.1 consider the probability measure
Pon [0,1] x{0,1} with uniform marginals, such that for every Borel subset A

of [0,1] (letting B, = {1} as above),

P(AnBy) = [[(%) + F'(x)]dx
A

where F(x) is as in Lemma 1.4.2 for O0sxs% and F(x) =F(1-x) for %<x<1.

ettt Tt

By an argument like the last part of the proof of Lemma 1.4.4 (and taking into

account the Remark prior to Lemma 1.4.3) one can verify that if 0<r<1,

------- - .. LT e e T %
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s=1-r, p=1/r and hence p'=1/s, then for this measure P,

al/p,l/p'(F.'G‘) = a and Rp,p.(F’.G") = 2a[1 - (%)p'p' log (29)]1/1,' Where

F* and G* are as in the proof of Lemma 1.4.4.
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SECTION 2: THE VECTOR CASE

In Section 2 here we shall examine measures of dependence which are
based on random variables taking their values in Banach spaces, i.e.
"B-valued" r.v.'s. For simplicity we consider only real Banach spaces.

But all results here are valid for complex Banach spaces as well. In

fact every complex Banach space is also a real Banach space (by restricting
the scalars), and a simple argument will show that the results for the
complex case follow from the real case,

Much of the theory of operators on spaces of functions (including
many results in interpolation theory) has been extended to functions taking
their values in Banach spaces. Most of the results here in Section 2 are
entircly elementary and in many cases are simply a reformulation, in our
context, of results already known in functional analysis in connection with
B-valued functions. Our main goal here is to clarify the connection between

measures of dependence and functional analysis involving B-valued functions.

SECTION 2.1: PRELIMINARIES

Here in Section 2.1 we shall review, in our terminology involving
measures of dependence, some elementary aspects of functional analysis
involving B-valued functions.

The norm of an element x of a given Banach space B will be denoted
by Jlxllg -

First recall that in the special case of a real Hilbert space H with
inner product <.,.> , each real bounded linear functional g on H is of the
form g(x): = <x,y> Vx€H for some fixed y H . In this setting it

is common practice to identify the functional g with the element y; and

| e andE apdE el oous e e i M S G L
P DAL AN N ARk -




with this identification one can say that g(x) = <x,g> . To put this
another way, H is (isometric to) its own (real) dual space.

Suppose B is a Banach space (with just real scalar multiplication).
If xeB and g is a real bounded linear functional on B, then we shall
use the notation <x,g> := g(x) (by analogy with the Hilbert space context
described above). The (real) dual space of B, i.e. the space of all real
bounded linear functionals on B, will be denoted by B*, Of course B* is
itself a Banach space (with just real scalar multiplication) with norm

|- llg« given by

swp lexgo] , xen

%18

(2.1.1) lellgs :

sup <x,g> , x¢€B

1*1is
(The latter equality is trivial; one can consider -x in place of x.)

If x €B then we can define a real linear functional z on B* by
z(y) := <x,y> ¥y €B* . That is, <y,z> := <x,y> Vy €B* ., It is easy
to see that z is a bounded functional, i.e. 2z €B** (the "“second dual" of
B), with norm ||z|lges = |Ix]lg . The identification of each x €B with the
corrcsponding z ¢B** is the standard way of isometrically embedding B in
B**. In many cases B** will have other elements besides (the embedding of)
the ones in B,

Recall the simple equation

(2.1.2) Vy €B*, [sup ley,2>l , z e - Uyl ge
12l g+

(or, similarly, Vxe B, ||x||g = sup |<x,y>|/||yllge, yeB*) . The following

»
AN,
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simple consequence of eqn. (2.1.2) will be useful later on:

Lemma 2.1.1: Suppose B is a Banach space, y €B* , 2z eB** , and
€>0 . Then there exists xeB with [x|[g < ||z|| gas such that

I<Y:2>| < (1+¢) <X,y> .

Now let us return to our probability space (,M,P) . For each
o-field A<M and each Banach space B, define S(A,B) to be the set of all
A-measurable simple B-valued random variables, that is, the set of random

. N . e .
variables of the form Zi=1 X5 IA(i) where N is a positive integer,
X

2e-sXy are elements of B, and {Al”"’AN} is a partition of Q with

Ai €AVi . For each X €S(A,B) and each p, 1 <p <« , define

py /P
I Xl I o CECRIDT T s 1<p <o

oo

ess sup [[x||p if p

To put this another way, if X = 22=1 X3 IA(i) with N, Xpseees Xy Al""’AN
N 1 .
as above, then “X||p = (2, ”xitlg * P(A))] P i 1 <p<» , and
X1, = max {|lx;|lg : P(A,) > 0}
For each p,q with 1 < p,q < » and each Banach space B, define the

measure of dependence Rp q(B) between o-fields F and G as follows:
’

Ry, q(FsGiB) := sup |E<X,Y>-<EX,EY>| , X €S(F,B)
IX{lp = NI¥1lq Y €S(G,B*)

Proposition 2.1.2: Suppose 1 < p,q <= , and B is a Banach space.

Then for any two o-fields F and G the following three statements hold:

(a) For any Banach space Bl which is isometric to B,

R (F,G;B)) =R (F,G;B
p.ql 1) = Rp,qf )
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which is isometric

(b) For any subspace B1 of B (or Banach space B

1

t b £fB), R F,G;B <R F,G;B
o a subspace of B) p,q( D= 5 q( )

(c) R, (F.GiB) = [sup R, q(F63By) :l

Finite-dimensional subspaces B, of B

Proposition 2.1.2 is elementary and its proof is left to the reader.

The Hahn-Banach theorem will be helpful in proving part (b).

Proposition 2.1.3: If 1< p,q <« and B is a Banach space, then

for any two o-fields F and G, R_ (F,G;B*) = R (G,F;B) .
P-q q,p

Proof: We shall first prove the following lemma:
Lemma: If € >0 , YeS(F,B*) , and Ze S(G,B**) , then there

exists Xe S(G,B) such that ||x||q_<_ ||z||q and |E<Y-EY,Z>| < (1+g) E<X,Y-EY>

. _ I
Proof of Lemma: Represent Y-EY and Z by Y-EY = Zi=1 Y3 IA(i)
J

- € RE v . .
Zj=1 zJ. IB(j) where Yi B* vi , {Al""’AI} is a partition of Q

and

with AieFVi s zJ.EB** Vj , and {Bl,...,BJ} is a partition of

with Bj €GVYj

Using Lemma 2.1.1, for each j=1,...,J let xJ. € B be such that

Ix; 11y < 25 llges and
j'B j'B

I I
|<)Ii=1 P(AinBj)yi s zj> | < (1+€) <xj , Zi=1 P(AinBj)yi> .

. o
Define X €S(G,B) by X := £, x; Iycs) . Then |X(ullg < [12(0) |lgus

for every weQ , and hence ||X||qi ||Z||q . Also,

T R

|E<Y-EY,2>| = 2521 <Tiag PN BY, 2.2
J I

< 2j=1 ‘<Zi=1 P(Ain Bj)yi’ zj>|

J I
S Tjay (ve) s <xy, Loy PRy BYYy>

(1+¢) E<X,Y-EY>

.....................
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This completes the proof of the lemma.
By the lemma, for any Ye S(F,B*) , Ze¢ S(G,B**) , and € > 0,

lE<y,z> - <EY,E2>|  |B<Y-EY,25|

el lizll, el Nzl

A

(1+€) » [sup E<X,Y-EY> , XeS(G,B)]

X Y
Xl Nvll,

(1+€) *+ [sup E<X,Y> - <EX,EY> , XES(G,B)j|

X Y
Il vl

Ia

(1+¢) - Rq,p(G’F;B)

H R_ (F,G;B*) <R_(G,F;B
ence p,q( ) < q p( )

»

By an exactly analogous argument, Rq p(G,F;B**) < Rp q(F,G;B*)
By Proposition 2.1.2(b) and the fact (noted earlier) that B is isometric
to a subspace of B**, (G F;B) < R (G F;B**) . From these last three

inequalities Proposit1on 2.1.3 follows. ThlS completes the proof.

From two applications of Proposition 2.1.3 (or from its proof) we have

Corollary 2.1.4: If 1 < p,q <« and B is a Banach space, then

R B**) = R B) .
P:q( ) P»q( )

Let g1 (resp. ﬂw) denote the Banach space of all absoclutely summable

(resp. bounded) sequences x := (51,52,53,...) of real numbers, with norm

£, (resp. IIXII 1= sup,

Iell = 55,
It is well known that (Ql)* is isometric to fm, the standard isometry being

1

(informally described) as follows: If x := (51,52,...) e and

y o= (nllnzp-co) €9¢m then

- T
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(2.1.3) y(x) = <x,y> := 5., &N,

Theorem 2.1.5: If 1 < p,q <« and B is a non-trivial Banach space,

00, = 1
(B) < Rp,qt) Rp.q(l )

then R (R) <R
P,q —

pP.q

Proof: The first inequality follows from Proposition 2.1.2(a)(b),
since R is (isometric to) a subspace of B. The second follows similarly if
B is finite dimensional, since every separable Banach space can be isometrically
embedded in 2 (as is well known); the general case follows by Proposition
2.1.2(c).

Finally, by the second inequality and Proposition 2.1.3, we have that

for any two o-fields F and G <M ,

o 1 oo 1 oo
R F,G;2 ) =R G,F;27) <R G,F;2 ) =R F,G;27) <R F,G; 2
p:q( ) q!p( ) - q p( ) P,q( ) - P q( )

3 H4

This implies the final equality in Theorem 2.1.5. This completes the proof.

For the next theorem, recall eqn. (0.4).

Theorem 2.1.6: For every non-trivial Banach space B the following three

statements hold:

(a) Rl’q(B) = Rl’q(R) vq, 1 < q <@

(® R, (B) =R (R} vp, 1<pc<

(c) In particular, RI,W(B) = Rl’w(RJ = 2¢
Proof: Let us take (a) for granted for a moment, and look at (b) and

(c). From (a) and Proposition 2.1.3 (and the trivial fact that R* is

isometric to R) one can easily derive (b). The first equality in (c) is

a special case of (a). The second equality in (c) is well known: The
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inequality R1 o(FsG;R) < 2¢(F,G) follows e.g. from [10, pp. 11-12,
Lemma 1.1.9], and the opposite inequality follows from a simple argument
based on the identity
E[IA(IB-IBC)] - EIAE(IB-IBC) = 2+ [P(BJA)-P(B)] « |[1,]]; - ||IB-IBc||°°

(say with AeF , BeG , P(A)>0 ) . Now all that we need to do is
prove (a).

It suffices to prove that Rl’q(F,G;B) = Rl,q(F,G;RJ in the case where
1 <q<> is arbitrary but fixed and F and G are finite o-fields, say
with F generated by the partition {A,...,A;} of Q, and G generated by
the partition {Bl,...,BJ} of Q . Without loss of generality we assume

that P(BJ.)>O vi .

Suppose X €S(F,B) and Y €S8(G,B*) . It suffices to prove that
(2.1.4) |E<X,Y> - <EX,EY>] < R, q(F,G;R) < Xl e nvnq

o= gl N
Represent X and Y by X := Zi=1 X, IA(i) and Y := Zj=1 yj IB(j) ,
. w . .
with X, € B and yje B* , with the events Al""’AI’Bl""’BJ being as

above. Then

|E<X,Y> - <EX,EY>| =

1 J
|zi=1 Zj=1 <xi,yj> [p(Ain Bj) - P(Ai)P(Bj)]l

I J
i=1 2:j=1; “xi”B * ”yj”B* * IP(AilBj) - P(Ai)l * P(Bj)

A

pX

J q , 1/q
A DY Ilyjll,,* P(B;)]

1 . ' '
“ (2], Gl lIxglly - 1Py (B - P DY) Y

B

-
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1
"Y”q ¢ "zigl "xi”B * IE(IA(i)|G) 'EIA(i)I ”qv

| A

1
"Y“q * zigl ”xi”B ¢ ”E(IA(i)lG) - EIA(i) "ql

A

. I
_ < ¥l + By lxglly « Ry ((F.GRY - HlT (5l

Ry, q(FGR) = Ix]ly - Il

by Holder's inequality, Minkowski's inequality, and Proposition 0,1(ii).
Thus eqn. (2.1.4) holds. This completes the proof.
Remark 2.1.7: We finish Section 2.1 with the following three comments:
(a) From Theorem 2.1.5, for given p and q with 1 < p,q <« , one can
interpret Rp,q(ﬁw) (= Rp’q(zl)) as Rp,q ("Banach space"), i.e. supg Rp, (B) .
(b) For given p and q (with 1 < p,q < ©) and Banach space B, one has

an equality analogous to Proposition 0.1, namely

R q(F-GiB) = sup Nei®) - BXll | xeser,m)
Il

(For Xe S(F,B) , the definition of the q'-norm of the not-necessarily-
simple B-valued function E(X|G) - EX will be straightforward.)

(c) Interpolation theory applies nicely to B-valued functions; see

Tk a e 80000

{1, Chapter S]. In [3, Remark 4.1] it was noted that by the Riesz (or
Riesz-Thorin) interpolation theorem, there are only four equivalence classes

for the measures of dependence Rp in the lower triangle 1/p - 1/q <1

)
’

represented respectively by, say, R, o R1 o’ Ry 1’ and R2 2 Similarly,
] 1] s 1)

by corresponding interpolation theorems for B-valued functions, for any

given Banach space B there are at most four equivalence classes for the

measures of dependence Rp q(B) in the lower triangle 1/p + 1/q <1 ,
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represented by, say, R ,m(B), Rl,w(a)' Rw’l(B), and RZ,Z(B)' By

Theorem 2.1.6, Rl «(B) and R, 1(B) do not depend on the choice of (non-trivial)
» »
B; but as we shall see in the next section, R, °°(B) can significantly vary

with B.

SECTION 2.2: ABSOLUTE REGULARITY

The measure of dependence B8 in eqn. (0.7) is the basis for the well
known "absolute regularity'" ([17] condition for stochastic processes. It is
already known that 8 is not equivalent to any of the other measures of
dependence given in eqns. (0.3)-(0.6) and (0.8), or to any of the measures of
dependence ar,s (0<r,s<1) or Rp,q (1<p,q<=) in eqns. (0.10)-(0.11)
at all, (More on this shortly.) Also, it seems that many limit theorems
for real-valued (or even H-valued) r.v.'s under the "strong mixing' condition
(which is based on the measure of dependence a in eqn. (0.3)) cannot be
carried over to more general B-valued r.v.'s unless the assumption of
strong mixing is replaced by the (stronger) assumption of absolute regularity.
See e.g. the discussion and results in Dehling and Philipp [5]. To some
extent, absolute regularity appears to be the most natural mixing condition
for limit theory for B-valued r.v.'s. Indeed, the measure of dependence B
has a quite '"natural" interpretation in terms of the measures of dependence
Rp,q(B); in Theorem 2.2.1 below, it will be shown with a totally elementary
argunent that B8 = (1/2)+ R, (£) (= (1/2) - R, (2}))

Now let us clarify the comparisons between B and the measures of

dependence o R in eqns. (0.10)-(0.11). Recall the inequalities

r,s’ p,q
a<B<¢ (see eqns. (0.3)-(0.4)). Also, B does not dominate p (see

eqn. (0.6)). (For a o-field F=={Q,A,Ac.¢} with P(A) = € (say with ¢

small), one has B(F,F) = 2¢(1-¢) and p(F,F) =1 .) From these facts and




the remarks in Section 1.2, one has that B dominates o, o only for

r+s <1, that § dominates Rp q only for 1/p + 1/q <1 , and that B
?

is dominated by a. o if either r=1 or s=1 , and hence by Rp q if

either p=1 or q=1 . In Theorem 2.2.3 below we shall show that 8

is not dominated by arsif r<1l and s<1 , or even by quifp>1

and q>1 .

Theorem 2.2.1: R_ () =R_ (¢} = 28.

o, 00
Proof: By Theorem 2.1.5 it suffices to prove that Rm’w(zl) = 28,
Since these measures of dependence automatically satisfy eqn. (0.1), it
suffices to show that if F and G are finite o-fields then
Ry o(F,G;81) = 2+ B(F,0) .
Suppose F is a finite o-field, generated by a partition {Al,...,AI}
of ?, and G is a finite o-field, generated by a partition {Bl,...,BJ} of Q.
Without loss of generality we assume that P(Ai) >0Vi and P(Bj) >0 Vj.
Recall that (21)' is isometric to £ % we shall use the natural
identification of these two spaces described in eqn. (2.1.3).

If X eS(F,zl) and Y €S(G,2°) then one can represent these r.v.'s by

N - . 1
X := zi=1 xg IA(i) and Y : Zj=1 yj IB(j) (with each Xy €2" and each
yjeﬁm ) , and one has
|E<X,Y> - <EX,EY>| =
= 2f 2 <x.,y.> (P(A.N B,) - P(A,)P(B.))|
2.2.1) i=1 “j=1 Ti*’j i i7"

A

1 J
(sup fIx,|| ) * (sup ly,]l ) * Z L |P(A," B.) -P(A,)P(B.)]
i 10! i3 e ge 13 1

IxJl,« IYll, < 28(F,6) .
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N Hence Rm’m(F,G;ll) < 2B8(F,G) . Conversely, in eqn. (2.2.1) equality is
: achieved if we take
x, := (o,...,0,1,0,0,...) (where the 1 is the ith coordinate),
yj 1= (yjl’ij’ij"") where
Yik i= {sign of [P(A) NB;) - P(AIP(B,)] if 1<k<I
0 ifk>1

- Hence R_ °°(F,G;ll) = 28(F,G) . This completes the proof.

!. Corollary 2.2.2: For every Banach space B, R _(B) < 28
- ’

This just follows from Theorems 2.1.5 and 2.2.1 .

Theorem 2.2.3: Suppose that 1<p,q < . Then (on some probability
space) the following two statements hold:
= (i) Rp,q fails to dominate B .
(ii) For each Py and qQ, such that 1 < P59y £° Rp’ fails to dominate
~ *
- Rpl’ql(z ) .
;3 Here (ii) is a trivial corollary if (i) and Theorem 2.2.1. To prove
~ (i) we shall show in Example 2.2.4 below that for different choices of pairs
of o-fields F and G, on different choices of probability spaces, one can

(simultaneously) have B(F,G) = 1/2 and Rp q(F,G;R) arbitrarily small.

Then by eqn. (0.13) and Remark 0.4, (i) will follow.

Example 2.2.4: Let p and q be arbitrary but fixed, such that 1<p,q < =
- We shall show that Rp q(F,G;R) can be arbitrarily small for o-fields F

and G satisfying B(F,G) = 1/2 . Now Rp q is non-increasing as p and/or q

. .
e increases; without loss of generality we impose the following further
A

restrictions on p and q:
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(2.2.2) 1<p <2

(2.2.3) 1<q<®

Thus q' satisfies 1<q' <

The following elementary fact will be needed later on:

2.1/2
k=1 )

|a .

p 5 (s
(2.2.4)  Va,...,.a eR, (5 l5/DHP> @ "

v
[
+
o

(Let us quickly review this. Recall the elementary inequality (a+b)t >

for a>90,b>0, t>1 . By induction, (Z:=l

and non-negative <:1,...,cm . Now plug in ) = |ak|p and t := 2/p ,

v
—

t m t
) 2 L,oq Ck fort >

using eqn. (2.2.2).)

Now let n be an arbitrary but fixed positive integer. Construct the
probability space (,M,P) as follows:

Define Q := {1,2,...,2n} x [0,1] . Define M= the family of Borel
subsets of Q. Define the probability measure Pl on {1,2,...,2n} (with the
standard discrete o-field) by Pl({j}) = (Zn)'1 , j=1,2,...,2n . Define
the probability measure P, on [0,1] (with the Borel o-field) to be Lebesgue
measure. Finally, define the probability measure P on (Q,M) such that P is

absolutely continuous with respect to P, xP, , such that

1+ h,(x) if 1<j<n
dp . ) J
(2.2.5) ——— (j,x) := _ .
d(Plez) 1 - hj_n(x) if nel1<j<2n
where hl’ h2' ... are the Rademacher functions on [0,1].

Note that the marginals of P on {1,2,...,2n} and [0,1] are P, and P,

respectively.

R N TR TR TR TR T
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Let us define the "marginal" o-fields

F:= {Ax[0,1]: A is a subset of {1,2,...,2n}}

G := {{1,2,...,2n} xB: B is a Borel subset of [0,1]}
By Proposition 0.1,

IEcelo) - Ef)l
q

el

Let f be an arbitrary but fixed (simple) real-valued, F-measurable r.v.

> fES(F,R)

2,.2.6 F,G; =
( ) Rp,q( G;R) sup

We shall first obtain an upper bound on |[E(f|G) - Efllq, /Hf“P .

This function f = f£(j,x) depends only on j; we can use the notation

£(j) := £(j,x) vj =1,2,...,2n (x€[0,1]) .

Define the functiomf1 and f, on {1,2,...,2n} as follows:
(2.2.7) fl(j) 1= -fl(j+n) t= (£(j) - £(j+n))/2 Vj = 1,2,...,n
(2.2.8) fz(j) i= fz(j+n) = (£(j) + £(j*n))/2 vyj =1,2,...,n

Then vj =1,2,...,2n , £(j) = fl(j) + fz(j) .

For a.e. X ¢[0,1]) (and every %€ {1,2,...,2n} ), we have by eqn. (2.2.5)
and some simple calculations, E(f|6)(L,x) - Ef = Ii_) £,(j) *h;(x)/n

Therefore

IECEIG) - Ef|lq* = (1/m) + (/) | 2.y £,0) hj(x)|q'dx]1/q'

By eqn. (2.2.7) and the convexity of the function uP (for nonnegative

- . oh .~ 1P71/p
u), we have that ||f1]|p5 ||f||p . Also ||f1||p ((1/n) Lia1 |£,() "]
by a trivial calculation. Hence by eqn. (2.2.4) and Khinchin's inequality

(see e.g. [20, Chapter S, Theorem (8.4)]) ,
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lIEcele) - el n(1/P)-1 (1 123, £, hj(x)(q'dx]”q'

Il ST, 160 PP
P j=1 £
n(l/P)-l c(q') - [z:=1 (fl(j))zlllz

{A

[ 2, | 5,032

S V) 1 c(q")

where the constant C(q') depends only on (our fixed value of) q'.

Since f was arbitrary, we have by eqn. (2.2.6),
-l/p'
R FGR)<n *C(q
p,q( )< (q")
By making n sufficiently large to begin with, we can make Rp q(F,G;R)

arbitrarily small. Also, by eqn. (2.2.5) and an elementary argument,

regardless of the value of n,

1 dp
B(F,G) =5« [, | - 1] d(P, xP,)
2 ’a a(p xP,) 1772
1
= 3 . IQ 1 d(Plez)

M
N

This completes the discussion for Example 2.2.4, and thereby completes the

proof of Theorem 2.2.3,

»

Remark 2.2.5: Gastwirth and Rubin [7] defined for each t, 1 < t <

the following measure of dependence:

8,(F,6) := |lvar[Pg(.| F) - P,

where PG is the restriction of the measure P to events in G. For finite
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o-fields F and G the definition of At(F.G) is clear; and for general o-fields
F and G, where a measure-theoretic ambiguity may have to be settled, we shall
simply stipulate that eqn. (0.1) be satisfied by At' It is easy to see that
A1 =28, a_=2¢, and that At is equivalent to B if 1<t<w, By a simple
argument similar to that of Theorems 2.1.6 and 2.2.1, one has that for each
t, lstso,

1

A_=R., (£) =R, (£).

t t!,®

t!,»
SECTION 2.3: THE HILBERT SPACE CASE

In [3, Section 4.3] measures of dependence based on H-valued (Hilbert space
valued) random variables were examined. Here we shall extend the main result
of that section. As earlier it suffices to consider real spaces.

Let H be an arbitrary real Hilbert space, with inner product <-, >,

For each p, 1sp<®, the quantity Zp 1= [(217)';’fwixlpexp(—xZ/Z)dx]l/p

(the p-norm of a standard N(0,1) r.v.) will be useful,

Theorem 2.3.1. If H is a non-trivial Hilbert space, (p,q) ¢ [l,oo]z, and

F,GcM, then Rp q(F,G;H) sA-Rp q(F,G’) where A=A(p,q) is a function only

of p and q. Further, if 1s<p,q<> then one can take A(p,q) =Zp -Zq for
1 1
any choice of P, and 9, satisfying p Spp <@, qsq) <=, and

pil +qu €1; and in particular, if 1<p,q<2 then Rp q(F,G;H) = Rp q(F,G;]R).

Thus for a given (p,q) ¢ [I,m]2 the measure of dependence Rp q(H) is

linearly equivalent to Rp q(]l) (or to Rp q in eqn. (0.10)). For the case

p=q ==, this was shown by Dehling and Philipp [5, p. 692, Lemma 2.2], who
used the Grothendieck inequality in their proof. Under the restriction
p"1 +q'l $1 one has Theorem 2.3.1 from [3, Theorem 4.2]; the purpose here is

to remove that extra restriction. Theorem 2.3.1 is not a particularly new

Cee 2NN -'.'-'1.'.’."-" v e an e Jran S a Bea -t Meu iran 2t JERR Sk S




result, but rather an adaptation to our context of results well known in
functional analysis,

The very last case of Theorem 2.3.1 (1<p,q<2) follows from the rest of
that theorem by taking P, =9, =2. (See eqn. (2.3.1) below.)

The proof of Theorem 2.3.1 will be based on the following lemma:
Lemma 2.3.2. Suppose l<ps<p, <%, 1sqsq <=, and le +qi1 <1. Sup-
_: pose Xl,..., XI and Yl""’ YJ are real-valued (or complex-valued) random

variables. Then

I
B0y 5oy N0 Tl = iyl dl ST g 0341 g

Proof.

J I J
JUCRHRUPRTER ISR T HIY IR N AV jeall g llq,

1 J
. . . Y. .
o A P I R TR

Here the first inequality comes from Holder's inequality (and the fact that

P A N AAA

our measure is a probability measure). To show the second inequality it is

enough to show that

1 1
(RN N UEN R

If Py =® then this is simple. (Also, if p=1 then this is simply Minkowski's

inequality.) If pl<°° then

1
I . PyP1/P11/P)
D51l = [T 15 PoPa/Py

I 1
. P|P1/Py1/P1 . P 1/p
S I PIZERYPE = L DG IPI, )
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I I
1/p P°P1/p ,P/P;,1/P
s UY NI PN .1 P = | ) [E|x, |PTPV/PP/PL

I
P ,1/p I
= x, = x. . .
[izlll ‘"1’1] Il 1”p1)1=1"1_p

This completes the proof of Lemma 2.3.2.

Proof of Theorem 2.3.1. For the cases p=® or q=v, see [3, Theorem

4.2). Here we only consider the case where 1<p<e and 1<q<®. As in the
proof of [3, Theorem 4.2] we restrict our attention to an arbitrary finite-
dimensional real Hilbert space H; we use the same Gaussian probability
measure Y on H as was used there. (The use of a Gaussian measure here is
similar to its use in Rietz [14].)

§=1inA(i) and Y := 2§=1yjIB(j) L2 A}
and {Bl""’ BJ} are each a partition of @ with A, eF for all i and

Suppose X := L where (A

BJ.eG for all j, and Xpseeer X and Yys+-s ¥y arve elements of H. To

I
prove Theorem 2.3.1 it suffices to prove that

»

2.3.1 E<X,Y> - <EX,EY>| s R_ (F,G;R) *Z_ -2z <|ix|l_<|j¥
( ) |E<X, I pq( )z, ql||||p l|||q

1

holds for every choice of Py and Q meeting the specifications PSP, <=,

qsq <=, and p;l +qi1 <1.

Before we prove eqn. (2.3.1), a couple of preliminary observations will
be needed. For any x,yeH one has <x,y> = IH<x,u>-<y,u>y(du). (This was
used in the proof of [3, Theorem 4.2).) For any xeH the r.v. V:H+R
defined by V(u) := <x,u> is a N(O,lellﬁ) r.v. (on the probability space
(H,Y)), and hence for any t, 1<t <, fH|<x,u>ltY(du) = Hx“fi . Zt.
These observations, Fubini's theorem, and Lemma 2.3.2 (on the probability

space (H,Y)) will now be used to prove eqn. (2.3.1), under the given




specifications on P, and q;, as follows:

ST N % ]

g
.

|E<X,Y> - <EX,EY>|

DD

|£E(<x,u>-<y,u>)y(du) - Pfl<lsx,u>-<mr,u>y(du)|

v v
.‘ .b

-
A By

| fIE(<X,u>+<Y,u>) - E<X,u>*E<Y,u>]y(du)|
H

s }flkp’q(r,e;n)-[E|<x,u>|P]1/p-[EI<Y,u>Iq]1/qY(dU)

= RpqF&R Il (<xi’U>.P1/p(Ai))§=1”£p. k<yj’“>'P1/q(3j));=llk9Y(du)
::‘-' s R (F.GR) - ”(({ll<xi"’>'P1/p(Ai) lplY(d“))l/pl)Llnzp
h“ lflo, w2/, | Yy (aw )v”ql);:lllkq
E = Ry q(FGR) -IkPl’p(Ai)"£|<xi’“>|p1Y(d“))1/p1)i=1'Qp

qrel/a . q, 1/9;,J
P By < (fl<y 02| Hy (aun) )5=1lkq
I
= ‘R) - . Py, P1,P/P1,1/p
R, o(FsG:R) [iZIP(Ai) Clx, I zpl) ]
J
. . q,,91,9/91,1/q
ljZlP(Bj) (llyjllH qu) ]

= R_ _(F,G;R) +Z_ <2 -llIx| <|l¥
a0 12, <2¢ <Kl < Il

Thus eqn. (2.3.1) holds. This completes the proof of Theorem 2.3.1,

Acknowledgments. The authors thank A. Gillespie for calling their atten-

tion to Zafran [19], and A. Gut for his interest and encouragement.
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PrAILS

ADDENDUM,

In connection with Theorem 1.1.1 and |3, Theorem 3.6], here are some
extra comments, added when this report was in the final stages of its prepa-
ration. The multilinear form B in Theorem 1.1.1 automatically has the property
that %B is a "product form" (in the terminology used in [3, Theorem 3.6]). For
any given p, for t >0 sufficiently small one can refine Theorem 1.1.1 by having
dEFB) =t, with B itself being a product form, (without disturbing the other
properties in Theorem 1.1.1). (The positive constant C=C(p) may have to be
made smaller, but that is of no significance.) To carry out this refinement,
we can restrict our attention to the case where 1.<pk~<w for some k, as in
the proof of Theorem 1.1.1. By examining the bottom four lines of p. 12 (and
the two top lines of p. 13) in the case where Bk =10,%] for all k, we see
that dp_(B) 22'n+1t in that construction. For t >0 sufficiently small
(depending on p) we can start by simply using that construction with t replaced
by 2"t. Then ZtSdP_(B) s2"t. To then modify the construction so that
dE‘B) =t and B is a product form (without disturbing the other properties in
Theorem 1.1.1) we simply define the number a := t/dR(B) and then replace
the probability measure P in the construction by the new probability measure
a*P + (1 - a)<[Lebesgue measure on [0,1]"].

This refinement can also be easily worked out with B being the n-dimen-
sional cumulant, because of the fact (see p. 12, line 7) that the (n - 1)-dimen-
sional marginals of the given probability measure P are simply (n - 1)-dimen-
sional Lebesgue measure. If one isn't concerned about the particular formula
for the multilinear form B, then (for a given p) '"not so small" values of
t<1 can also be covered in this refinement by simply using the multilinear
form B(fl,..., fn) = t-E(f1°...-fn) on a trivial probability space con-

sisting of just a single point. Also, Remark 1.1.2 can be refined (with an

appropriate linear functional) in an exactly analogous manner as above.
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